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Abstract 

Using the framework of supersymmetric Witten-Jones theory the composite link polynomials 
related to the basic classical simple complex Lie superalgebras will be computed. The related 
graded Casimir operators will be given explicitly for arbitrary covariant class I representations. As 
a consequence of the topological interpretation of link invariants, it is essentially possible to derive 
the Boltzmann weights of the associated IRF models found previously as solutions of the graded 
Yang-Baxter equation. 
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1. Introduction 

The universality of Witten-Jones theory has been discussed in many papers [l-l 51. Using 
the framework of topological Chem-Simons theory (CST) a great variety of previously 
known but also new link invariants was derived. Previously, a host of intimate connections 
with statistical mechanics and rational conformal field theories was established [ 16-211. 
For example, Akutsu-Wadati knot invariants derived earlier from solvable models related 
to the Yang-Baxter equation (YBE) [22-251 could be given as vacuum expectation values 
of gauge invariant Wilson loop operators associated with certain representations of simple 
Lie groups [3-81. 
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It was Home [26] to extend Witten’s pioneering work [l] to supersymmetric Lie groups 
[27-291, calculating link polynomials related to elementary representations of the basic 
graded Lie groups. However, it is possible to extend Home’s approach to arbitrary covariant 
class I representations in order to introduce composite supersymmetric link invariants. In 
analogy with the non-graded case it is then feasible to rederive powerful knot polynomials 
related to solutions of the graded Yang-Baxter equation (GYBE) [30,31] by topological 
means within the CST and point out further generalizations. In this context the topological 
derivation is of particular interest since the well-known fusion method of Wadati et al. is 
applicable only for solvable models with quadratic minimal polynomials such as interaction- 
round-a-face (RF) models associated with SU(r Is) [23,30]. 

Calculating the related graded Casimir operators explicitly, it is not only practicable 
to evaluate the knot invariants but also the relevant Boltzmann weights of the associated 
solvable models found previously as solutions of the GYBE [30]. 

The paper is organized as follows: Section 2 will review Witten-Jones theory for super- 
symmetric Lie groups and give explicitly the corresponding Casimir operators for arbitrary 
covariant class I representations. The supersymmetric composite invariants will be exam- 
ined in Section 3 in a case-by-case study. A detailed conclusion and an outlook to further 
generalizations will be provided in Section 4. 

2. Super Witten-Jones theory 

The basic objects of Witten-Jones theory are the vacuum expectation values on the three- 
sphere S3 of Wilson line operators in Chem-Simons gauge theory based on an arbitrary 
simple Lie group G [l]. A link L in S3 may then be considered as a disjoint union of 
circles Ci, oriented and labeled by a choice of representations Ri of G. The relevant link 
expectation value is given by 

(L) = ZG,R(M, L) = /DAeiLCS n wRi(ci), 
i 

(1) 

where &s is the Chem-Simons Lagrange action and ( WR; (Ci)] are the gauge invariant 
Wilson line operators [I]. 

Following Home [26] it is possible to extend Witten-Jones theory to include complex 
simple Lie superalgebras of Kac type A(rls), B(r Is), C(s) and D(r(s) [27-291, using the 
supersymmetric CS action 

k 
Lcs = - 

4n s 
str(A A dA + 5 A A A A A). 

The gauge connection A is now given by a supermatrix containing bosonic and fermionic 
parts and the supertrace str guarantees the supergroup invariance. Naturally, we will have 
to exclude Lie superalgebras with degenerate Killing form such as A(rlr), D(s + 1 Is) and 
D(211, a), since it does not seem to be possible to define the CS action in these cases. A 
detailed study of super Chem-Simons theory was presented by Sakai and Tanii [32]. 
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In analogy with the non-graded case, ZG,R(M, L) can be computed employing an 
algorithm for untangling knots [l]. Quantization of the super Chem-Simons theory in 
the presence of Wilson lines again defines a physical Hilbert space ‘H associated with the 
choice of representations Ri of G. Likewise the dimension N of ‘H is given once more from 
the decomposition of the chosen representation R of the super Lie group G into irreducible 
representations Ei : 

R@R = ($I$. (3) 
i=l 

However, in the case of graded Lie groups finite-dimensional representations are not nec- 
essarily completely reducible, defining the so-called atypical representations, and we have 
to distinguish tensor products of both covariant and contravariant basis vectors of the same 
class, as well as tensor products of class I and class II representations [33-351. Neverthe- 
less, in the context of deriving graded knot invariants it is essentially possible to restrict on 
pure covariant class I representations. In this case the super Young tableaux correspond to 
ordinary Young tableaux [34] and the associated quadratic Casimir operators seperate the 
irreducible representations completely [36]. 

The highest weight A of the irreducible representation under consideration is usually 
expressed as a sum of rank G fundamental weights Aj, 

rank G 

A = C UjAj, 

j=l 
(4) 

defining the Kac-Dynkin coefficients (aj) of the concerned representation r. The funda- 
mental weights are calculated as usually from the inverse of the Cartan matrices and the 
simple roots of G, which are given for example in [37]. The quadratic Casimir operator Cr 
may now be evaluated similarly as in the non-graded case using 

Cf = (AlA +2P), (5) 

where now the dual Weyl vector has to be determined from the bosonic and fermionic roots 

(cf. [281) 

(6) 

Considering the standard normalization of the fundamental weights and the distinguished 
choice of simple roots, the graded quadratic Casimir operators for the classical simple 
complex Lie algebras are found to be explicitly for: 
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(r 1 2, s ? I, r # s + 1). 

The Casimir elements may be determined alternatively, in particular in the case of A(r Is), 
from the results of Baha Balantekin [38], Jarvis and Green [39] by taking into account that 
c$ ’ jaj represents the total number of boxes in the Young tableau and CT!‘: ’ aj = ni 
corresponds to the Kac-Dynkin labeling {ni} of the representation. 

We may now proceed as in the case of non-graded Witten-Jones theory. Using the well- 
known connection between the physical Hilbert spaces in (2+1)-dimensions and the spaces 
of conformal blocks in (l+l)-dimensions, it is feasible to determine the skein relation 

=-k.R(M, L-) + aOZG,R@'f, LO) + ~+ZG,R(M, L+) 

+ ” ’ + a(N-I)+ZG.R@“f, &V-l)+) =o (8) 

from the eigenvalues hi of the corresponding monodromy matrices: 

CL = (-l)N fi hi, 
i=l 

q) = (-I)+' 
(fiki) (&‘)* 

qN-2)+ = - FJ-it 

i=l 

Uy(N-l)+ = 1. (9) 
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As usual, the monodromy eigenvalues hi can be deduced from the conformal weights of 
the primary conformal field transforming as the representations involved, R and Ei : 

ki = (-1)Nf’ exp[in(2hR - h&)1. (10) 

Here the conformal weights hr may be calculated from the Casimir operator of the adjoint 
representation C, and the quadratic Casimir elements Cr given in (7): 

hr = 
1 

- Cr. 
k + C, 

(II) 

Selecting now the spin-s representation of the classical simple complex Lie superalgebras 
the corresponding composite link polynomials are obtained straightforwardly as shown in 
Section 3. 

It is important to observe that we may express the Boltzmann weights of the associated 
exactly solvable models in terms of the braiding matrix Bk at the face k on a primary field u 
and the corresponding monodromy eigenvalues ki given in (10). According to Gepner [20] 
the projection operator associated to Bk is defined by 

/,a = fi Bk - Ai 
i=] iZa ha -‘i 

(12) 

The corresponding IRF model may then be introduced via its Boltzmann weights described 
in the usual operator form (cf. [20]) 

with the functions 

U-1 N-l 

Y(u) = n sin({i + u) n SiIl(<i - u), (14) 
i=l i=l 

where 

ti = :n.WEi+, - hEi]. (15) 

Here K is the spectral parameter which labels the family of models. The braiding matrix 
generally is computed from the quantum Clebsch-Gordon coefficients [40] and restrict- 
ing, for example, to the fundamental and spin-s representation of A(r(s), the results agree 
with the Boltzmann weights of the SU(r + 11s + l)-IRF model and IRF fusion model, 
respectively, introduced by Deguchi et al. [31] in terms of Jacobi elliptic functions. Nat- 
urally, the Boltzmann weights of OSp IRF fusion models can be constructed 
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explicitly in the same way. Hereby the resulting IRF models are generalizations of inte- 
grable spin chains consisting of bosons and fermions introduced originally by Sutherland 

1411. 

3. The supersymmetric composite invariants 

In order to examine the properties of the supersymmetric composite invariants in a sys- 
tematic way it is appropriate to evaluate the relevant link polynomials explicitly. Like in the 
non-graded case it follows from the properties of RCFT and the corresponding IRF models 
defined by (13), that the invariants so constructed always obey the Markov properties and 
thus are well defined [6,20]. 

Composite link invariants are given by Witten’s path integral associated with the irre- 
ducible representations in the product of the spins representation R, placed on the individual 
m = 2s strands of a composite braid [6,8,10]. When restricting to covariant class I repre- 
sentations, R, is given by Young tableaux containing m boxes in a row, in analogy with the 
non-graded case. The decomposition relation (3) reads as: 

m @ WJ= pxJ!$ a3 m @ ... $ I 

tm-i+l -++-2i-2 -+ 
& & El Ei E In+1 

for A@(s), 

for B(r Is), C(s) and D(r Is). (16) 

The Kac-Dynkin coefficients (ai) of the irreducible representations R,, Ei, and q5 are 
(m, 0, . . . , 0), {2i - 2, m - i + 1, 0, . . . , O), and {0, . . . , 0}, respectively. Referring to the 
results of the previous section the associated Hilbert spaces are of dimension N = (m + 1) 
and N = (m + 2) (cf. (3)), leading to an (m + 1) and (m + 2)-dimensional skein rela- 
tion (8) for the cases of A(rls) and B(r(s), C(s), D(r(s), respectively. Observing that a 
realization of A(r Is) is provided by SU(r + 1 Is + l), the Casimir elements corresponding 
to (16) may now be calculated from (7) for the various classical simple Lie superalgebras 
(i= l,...,m+l): 
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A(r - 11s - 1) : CR,~ = i 
m2 

rn2 - m + m(r - s) - - 
I r-s ’ 

2m2 

B(r1.s) : 

C(s) : CR, = i[m2 + 2m + hs], 

CE; = m2 - h + i2 - i + m(3 - 2x), 

D(rls) : C& = $[m2 - 2??I -k h(r -S)]. 

CE, =m2-2m+i2-i+fm(r-s-i). (17) 

The skein relation coefficients (9) for the composite link invariants associated with the 
spin-s = irn representation may now be determined straightforwardly from the eigen- 
values J+ (10) for the different cases of supersymmetric Lie groups. The usual 9 variable 
substitution 

2rri 
4 = exp k + C, 

[ 1 (18) 

imposes simultaneously the deformation parameter of quantum groups related to primary 
fields of Wess-Zumino conformal theory [42,43]. In order to reach agreement with the no- 
tation used in knot literature based on standard framing, as usually, the Wilson lines must be 
adjusted by j-fold Dehn twists [I], imposing a subsequent multiplication of the coefficients 
Uj+ by exp[-jnih&] (j = 0, . . , N - 1). 

The case qfmA(r - 11s - 1) (SU(r(s)): The eigenvalues (ki) are given by (i = I.. . . , 
m+ 1) 

ki = (_ly+l+i q [-(1/2)i(i-I)+(m(m+(r-s))/2(r-s))I (19) 

leading to an (m + I)-dimensional skein relation as in the case of the non-graded Lie groups 
mAn_l. For instance, in the non-composite case, i.e., ’ A(r - 11s - l), we will obtain the 
supersymmetric version of the HOMFLY polynomial (cf. 1261) 

q-(‘P”)/2L+ + (qt/2 _ q-t/2)Lo _ q”-.y’l’L_ = 0; (20) 

the case m A(r - 1 (s - 1) yields the supersymmetric extension of the generalized (2-variable) 
Akutsu-Wadati polynomial (cf. [6]), i.e., form = 2 

L2+ + (C-9 
r-s+2 + qr-s+l + q’-“-l)L+ 

+c-4 
2(r-s)+3 

-9 
2(r-s) + q 2(r-s)+l )Lo + q‘ 30-.~+2~_ = o, (21) 

These results agree exactly with the original defining relations of the composite invariants of 
Deguchi et al. [30], derived from solutions of the GYBE using the fusion method. Comparing 
(19)-(21) with the corresponding results of the non-graded theory we observe that it is 
possible to obtain the invariants related to A(r - 1 (s - 1) from those of A,_1 by the 
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replacement n + r - s (as stated already by Home [26] and Riggs et al. [44] for the 
non-composite case). Thus form = 1 the theory yields only one in this sense new invariant 
corresponding to r - s = 1 (recalling that r - 1 > s - 1 > 0), whereas the composite 
case implies m different link polynomials. As shown by Kauffman and Salem [45] the 
Alexander-Conway polynomial is related to the ’ A(rlr) algebras excluded in the Chern- 
Simons approach. However, if we relax the defining conditions of A(r Is) in order to obtain 
the graded Lie algebra gl(r Is) it seems to be possible to include the case r = s. 

The case ofmB(rls) (USp(2r + 112s)): The eigenvalues of the nB(rls) monodromy 
matricesarefoundtobe(i= l,...,m+l): 

& = (_l)‘+mft q-‘2/2f’/2f”/2 and $ = q(“/2)lm+2(r-s)-t1. (22) 

Recalling that h@ = 0, the eigenvalues related to the scalar representation follow from the 
conformal weights of the spin-s representation R, (cf. (10)). In analogy with the non-graded 
case the skein relation is of degree (m + 2) and the link polynomials related to m B(r Is) again 
may be obtained from the corresponding results of m B, by the replacement iz + r - s. 
However, now applying r > 0 and s > 1, yields a hierarchy of m different polynomials 
for each value of r - s = 0, - 1, -2. . ., corresponding for s > r to a Witten-Jones theory 
with gauge group mB(s Ir) at level -k (cf. [26]). Kauffman polynomials correspond to ’ B, 
non-graded Chem-Simons theory. Observe now that the link polynomials obtained this way 
agree with the results of Zhang et al. [46-48], where the theory of quantum supergroups is 
applied to the construction of braid group representations and link invariants. For example, 
in the case of m B(O( i), provided by OSp( l(2), the skein relation is given by 

m+l 

I-l 4 
-i2/2+i/2+m/2L_ + . . . + q-(1/4) lm3-2m2-3ml~(m+t)+ = 0, 

i=l 
(23) 

This coincides (modulo the framing convention) with the skein relation of the link poly- 
nomials derived from the spin-s representation over the quantum group U, (OSp( 112)) by 
Zhang [48] (q being a root of unity) given there in the form 

L(6) = q -m(W2)+2) cZ;’ ts 

N-l m 

x fl C(-1pq 
(m-i+2)(m_i)(l,/2) qm-‘+“2 + q-m+i-“2 

t=l i=O 
qm/241/2 + q-m/2-l/2 

for the closed braid e^ = (bi, )‘I (bi2)l2 . . (bi,,_,)‘N-1 of the braid group f3~. Hereby the 
skein relation (23) may be obtained as usually from the (m + 2)th order polynomial equation 

m+2 

c (G; - hj) = 0 (24) 
j=l 

for the braid element G{, described, e.g., by Gepner [20] or Akutsu and Wadati [49]. 
The case of “C(s) (OSp(212s - 1)): The (m + 2)-dimensional skein relation may be 

determined from the eigenvalues (hi] (i = 1, . . . , m + 1): 

hi = (_l)‘fm+’ q-i2/2f’/2fm/2 and Q = _q(m/2)b?I+2(1-s)1. G5) 
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Thus the Chem-Simons approach yields once more similiar link polynomials as in the 
composite non-graded case, featuring however different skein relation coefficients for all 
possible values of s, i.e., s > 2. 

The case of MD(r(~) (OSp(2r12s)): Naturally, also the mD(rls) invariants obey an 
(m + 2)-dimensional skein relation as in the case of ordinary Lie groups. The eigenvalues 
are given by (i = 1. . . . , m + 1): 

hi = (_J)‘+mft q-‘2/2f’/2+m/2 and k$ = q(m/2)tm+2(r-.~)-21, (26) 

coinciding with the corresponding results of m D,, after the replacement n + r - s. 
Recalling that r 2 2, s 1 1 and r # s + 1, we will obtain new skein relation coeffi- 
cients for the condition s > r. 

4. Conclusion and outlook 

The main objective of the present work is given by the incorporation of supersymmetry 
in Witten’s original quantum field theoretical approach to knot theory in order to derive 
composite link polynomials defined earlier from solutions of the GYBE, using the fusion 
method. Hereby the primary intention is to present explicitly neglected results in the latter 
area and to outline in a pedagogical way the computation of a variety of known and new 
link polynomials. For instance, the HOMFLY polynomial and Akutsu-Wadati polynomials 
are derived as special cases, when restricting to the non-graded theory. The field theoretical 
interpretation is of particular importance for the super Lie groups B(rls), C(s) and D(r Is) 
since the fusion method fails to derive the corresponding composite link invariants. 

We may observe the close relationship between the results of graded and non-graded 
theories which is a natural consequence of the definition of supersymmetric Lie groups. 
While in the case of non-composite theory we obtain new skein relation coefficients only 
for a few values of the group dimensions (r, s), i.e., for example in the case of A (r Is) for the 
values r - s = 1, the composite case implies a hierarchy of m different link polynomials. 

Naturally, also the supersymmetric Witten-Jones theory related to composite represen- 
tations is not unitary in general, which is reflected in the appearance of negative values of 
the expectation value of the unknot (O), e.g., in the case of “C(s) (cf. Home [26]). 

It is interesting to observe that the rank-level duality of CST is reflected in the super- 
symmetric link invariants. Since the permutation of the monodromy eigenvalues hi does 
not lead to new results of the skein relation coefficients, the same link invariants will be 
obtained for dual decompositions of the chosen representation (see [6,44]). 

Higher-spin polynomials being progressively more powerful, emphasize the importance 
of the introduction of composite link invariants. For instance, as shown by Ramadevi 
et al. [50], the chirality of the two knots 942 and 1071 is not detected by any of the well-known 
polynomials, namely Jones, HOMFJ-Y and Kauffman. However, the composite MA,_ 1 in- 
variants are indeed sensitive to the chirality of these knots for m > 3. In this sense the 
supersymmetric approach represents a further step of generalization. 
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Unfortunately, any of the derived composite knot invariants do not distinguish isotopi- 
tally inequivalent mutant knots and links. Recently, Ramadevi et al. [51] succeeded in the 
construction of r-composite invariants given by a sum of ordinary Chem-Simons invariants 
placing a set of r-representations in each composite strand. As a consequence some mutant 
links can be distinguished and it might be interesting to examine the corresponding exten- 
sion to supersymmetric Lie groups. Furthermore, we may also study multicolored graded 
invariants, where different representations are placed on different composite strands. 

The present approach was restricted to cases of the classical simple complex Lie superal- 
gebras. A generalization to the exceptional Lie superalgebras F(4) and G(3) is straightfor- 
ward, whereas it seems to be impossible to construct a Witten-Jones theory for the strange 
superalgebras P(n) and Q(n). However, Frappat et al. [_52] succeeded in the construction 
of a non-degenerate Killing form, simple root systems and highest weight irreducible repre- 
sentations for P(n), implying eventually a possibility for the derivation of P(n) invariants. 

Further generalizations may be discovered when exploring the derivation of knot in- 
variants related to the 22 @ Z2 graded color superalgebras (see Jarvis et al. [53]) as, e.g., 
Sp0(2rl1(2s10). 

Finally, we may examine the construction of quantum universal enveloping algebras using 
super Chem-Simons theory. In the same way Witten succeeded in deriving the correspond- 
ing structure coefficients starting only from the general covariance of 3D Chem-Simons 
theory with gauge group SU(2) [43], it is essentially possible to generalize Witten’s ap- 
proach to arbitrary classical Lie groups as, e.g., in the case of link invariants. 

It is important to emphasize that the main results within the present approach proceed 
directly from Witten’s Chem-Simons theory and thus are not mathematically rigorous [ 11, 
however, they can be verified by other means such as the quantum group approach. For 
example, in the case of mB(OJ 1) the results agree with the link polynomials related to 
the quantum group U,(OSp(l]2)) derived by Zhang et al. [48]. As a consequence it is 
instructive to compute composite link polynomials also from super Chem-Simons theory 
in order to compensate the lack of analogy with Witten-Jones theory. 
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